The meeting will begin shortly

Please mute your microphone until called for questions.

Please disable your video unless you are speaking.

Please enter your name and title in the chat.

Please insert questions in chat or raise hand to speak.

•I This meeting is being recorded.

Welcome to this public meeting of the EAST FORK SAN JACINTO RIVER WATERSHED PARTNERSHIP

May 17, 2023

EAST FORK SAN JACINTO RIVER

Environmental Protection

4610


uston-Galves Area Counci

MEETING OUTLINE

- Welcome and Introductions
- Project Background
- Bacteria Source Model Revisions
- Implementation Strategies
- Next Steps
- Discussion

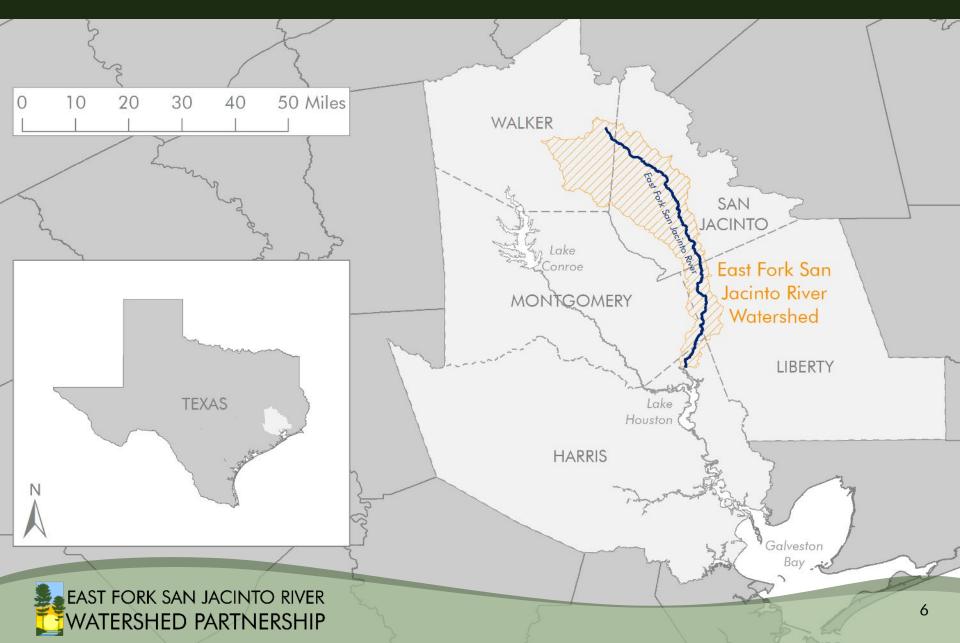
INTRODUCTION

WHO WE ARE

Texas Commission on Environmental Quality (TCEQ)

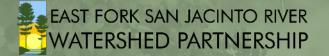
lead state environmental management agency

Houston-Galveston Area Council


Houston-Galveston Area Council (H-GAC) regional council of governments

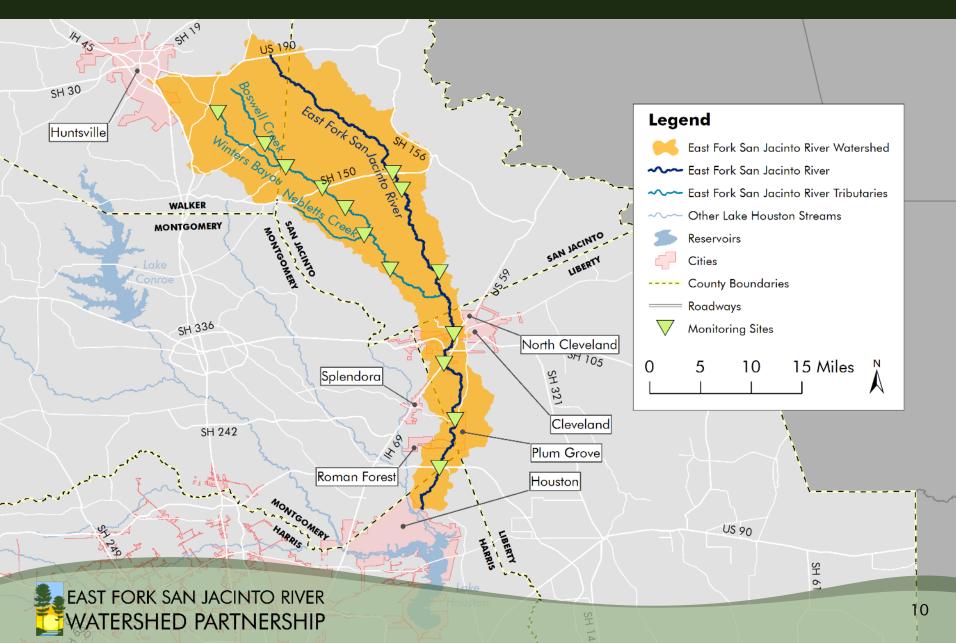
Watershed Partnership

local stakeholders working with TCEQ and H-GAC to develop and implement a watershed protection plan for the East Fork San Jacinto River watershed

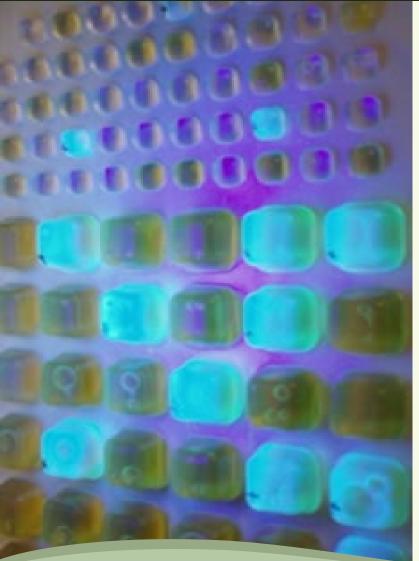

WHERE WE WORK

Surface water quality in the East Fork San Jacinto River Watershed is impaired due to high levels of fecal indicator bacteria.

PROJECT BACKGROUND



Assessing Water Quality



- Statewide monitoring
- TCEQ produces integrated report of results every two years
- Waterways exceeding standards are **impaired**

Monitoring In The Watershed

STATUS OF EAST FORK SAN JACINTO RIVER

- The East Fork San Jacinto River and Winters Bayou are **impaired** for contact recreation
- Recreation use concern in Boswell Creek
- High levels of bacteria Escherichia coli (E. coli) indicate pollution from fecal waste

BACTERIA SOURCES

WATERSHED PARTNERSHIP

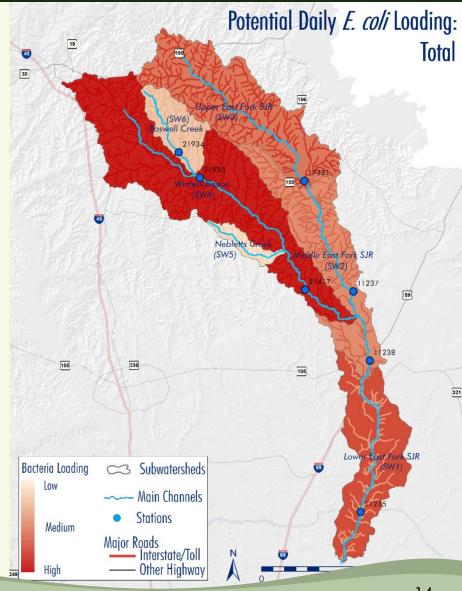
Human Waste

- Wastewater
- Septic/Aerobic Systems
- Illicit Sewage

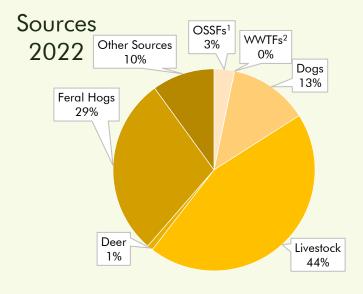
Domestic Animal Waste

- Pets
- Livestock

Wildlife and Invasive Species Waste


- Deer and Other Wildlife
- Feral Hogs

BACTERIA SOURCE MODEL REVISIONS



Bacteria Modeling

- Provides defensible support for watershed protection plan development
- Visualizes pollutant dynamics throughout the watershed over time
- Balances complexity and efficiency

FEBRUARY MEETING OVERVIEW

41,322 billion cfu/day

EAST FORK SAN JACINTO RIVER

WATERSHED PARTNERSHIP

¹OSSFs – On-Site Sewage Facilities ²WWTFs – Wastewater Treatment Facilities

- Highest potential loading in the Winters Bayou subwatershed influenced by agriculture, wildlife and invasive feral hogs
- High loading also possible in lower East Fork subwatershed due to human related sources
- Source pressures will fluctuate over time due to changes in land use and land cover
- Total daily load will increase 40% by 2050 if no action is taken
- Stakeholder feedback will refine these results

WASTEWATER TREATMENT FACILITIES

Methods:

- Based on outfall data (within buffer zone) from 10 facilities
- Load estimated by size (<0.1 to 1 MGD)

Findings:

- Highest relative loads occur in the middle and lower East Fork subwatersheds
- Expected to increase over time
- Significant potential for human health risk but minor contribution to total load

Recommendations:

 Depending on on-site sewage facilities methods, consider adding a failure rate based on exceedances

ON-SITE SEWAGE FACILITIES

Methods:

- Used permit data and assumption of unpermitted units based on occupied parcels outside service areas
- Estimated 10% failing

Findings:

- Highest relative loads occur in the middle and lower East Fork subwatersheds
- Expected to increase over time
- Significant human health risk but minor contribution to total load

Recommendations:

• Depending on wastewater treatment facility methods, consider no failure rate for permitted systems and higher (20%) rate for unpermitted systems

DOG WASTE

Methods:

- Literature value applied to household data
- Includes 20% reduction of estimated load based on pet waste management

Findings:

- Highest relative loads occur in the middle and lower East Fork subwatersheds
- Expected to increase over time
- Moderate contribution to total load

Recommendations:

• Seek further stakeholder input on accuracy of American Veterinary Medical Association (2018) estimation of 0.6 dogs per household

LIVESTOCK WASTE

Methods:

- County agricultural census data and suitable land cover adjusted by watershed area ratio
- Includes cattle, horses, sheep and goats

Findings:

- Highest relative loads occur in the Winters bayou subwatershed
- Expected to increase slightly over time
- Major contribution to total load

Recommendations:

 Apply good-faith reduction similar to calculation for dog waste based on best management practices in use by landowners

DEER WASTE

Methods:

- Used Texas Parks and Wildlife population density data based on ecoregion
- Density assumptions adjusted for land cover type

Findings:

- Highest relative loads occur in the Winters Bayou and Upper East Fork subwatersheds
- Expected to decrease slightly over time
- Minor contribution to total load

Recommendations:

• No changes recommended, however, stressed that populations are more dense in mixed land cover areas and that bottomland populations are seasonal

Feral Hogs

Methods:

- Used AgriLife population density literature values
- Density assumptions adjusted for land cover type

Findings:

- Highest relative loads occur in the Winters Bayou subwatershed
- Expected to decrease slightly over time
- Major contribution to total load

Recommendations:

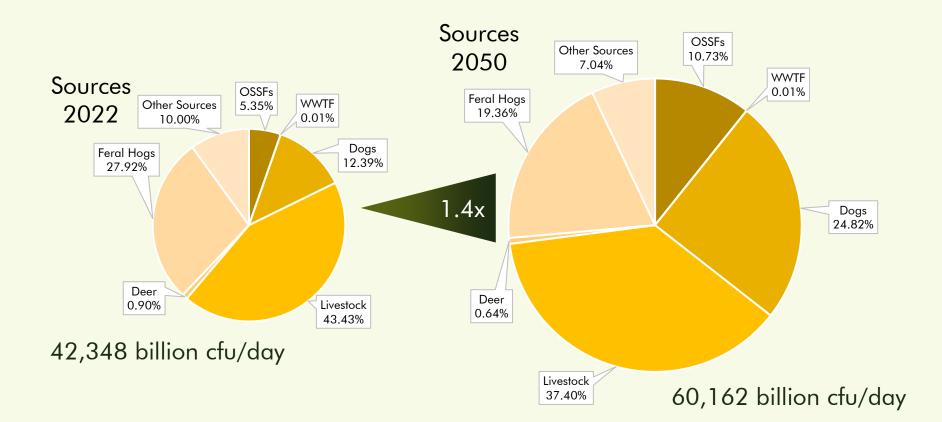
• Allocate 50% of lowest population density estimate to the riparian buffer in areas of medium to high development

Other Sources

Methods:

- Accounts for potential wildlife impacts on the instream load
- As no population data are available for many wildlife species, method assumes additional 10% of total calculated load can be attributed to wildlife

Findings:


 This method is not spatially specific, applied to total watershed area

Recommendations:

- Generalize language to "other sources" or "safety margin"
- Leave assumption at 10%, load may not be significant due to animal size
- Do not assume consistent percent contribution from wildlife in future projections

Updated Model Results

¹OSSFs – On-Site Sewage Facilities ²WWTFs – Wastewater Treatment Facilities

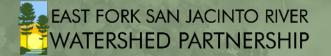
Sources Not Included In Analysis

Birds

- Short-term migratory birds vs. colonial birds
- Relatively small human health risk

Sanitary Sewer Overflows

- Episodic, localized events
- Malfunctions cause highest volumes and frequencies
- Significant risk to human health, address directly in management strategies


What other considerations should be made?

IMPLEMENTATION STRATEGIES

IDENTIFYING SOLUTIONS

Goals

- Primary: compliance with water quality standards
- Secondary: multiple benefits, coordination with ongoing efforts, cost effectiveness, phased approach

Hierarchy of Solutions

- Existing Projects
- Planned Projects
- Projects Awaiting Resources
- New Projects

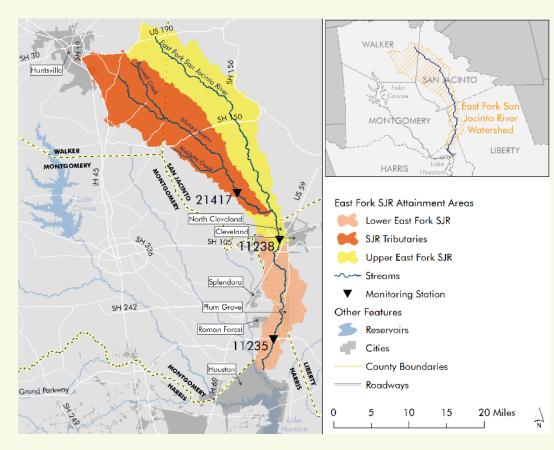
Role of a Watershed Protection Plan

EAST FORK SAN JACINTO RIVER

WATERSHED PARTNERSHIP

- Where coordination is possible, the WPP will describe solutions that enhance, support and fill gaps in existing efforts
- Descriptions of new proposals included in the WPP will identify:
 - Responsible parties
 - Resource needs
 - Timelines
 - Measures of success
- WPP development can attract funding/technical resources

Setting Goals



Model Accuracy

- Select focus areas based on modeling results and stakeholder recommendations
- Effort is not required to be proportional to model results
- Decide on target date for implementation goals
- Milestones used to establish timeline

WHERE TO FOCUS

- Different pressures affect different parts of the watershed
- Implementation measures can be customized in different areas for more effective results
- H-GAC suggests focusing on three major attainment areas

NEXT STEPS

TIMELINE

► 2024

SHORT TERM GOALS

- Meet with workgroups to discuss implementation strategies in June
- Next Partnership meeting in July to share workgroup recommendations and finalize implementation strategy selection
- One-on-one meetings with stakeholders

HOW CAN WE HELP?

- Tell us about your projects and organizations!
- Tell us how we can:
 - Amplify
 - Collaborate
 - Coordinate

DISCUSSION & QUESTIONS

Rachel Windham 713-993-2497 rachel.windham@h-gac.com

3555 Timmons Lane, Suite 120 Houston, TX 77027

www.eastforkpartnership.com

This project is funded by a Clean Water Act 319(h) grant from the US Environmental Protection Agency and administered by the Texas Commission on Environmental Quality.

WATERSHED PARTNERSHIP