The meeting will begin shortly

Please mute your microphone until called for questions.

Please disable your video unless you are speaking.

Please enter your name and title in the chat.

Please insert questions in chat or raise hand to speak.

•I This meeting is being recorded.

Welcome to this public meeting of the EAST FORK SAN JACINTO RIVER WATERSHED PARTNERSHIP

August 30, 2023

EAST FORK SAN JACINTO RIVER

Environmental Protection

4610

MEETING OUTLINE

EAST FORK SAN JACINTO RIVER

- Welcome and Introductions
- Project Background
- Model Revision Update
- Implementation Strategies
- Next Steps
- Discussion

INTRODUCTION

WHO WE ARE

Texas Commission on Environmental Quality (TCEQ)

lead state environmental management agency

Houston-Galveston Area Council

Houston-Galveston Area Council (H-GAC) regional council of governments

Watershed Partnership

local stakeholders working with TCEQ and H-GAC to develop and implement a watershed protection plan for the East Fork San Jacinto River watershed

PROJECT BACKGROUND

WHERE WE WORK

Assessing Water Quality

EAST FORK SAN JACINTO RIVER

- Statewide monitoring
- TCEQ produces integrated report of results every two years
- Waterways exceeding standards are **impaired**

Surface water quality in the East Fork San Jacinto River Watershed is impaired due to high levels of fecal indicator bacteria.

BACTERIA SOURCES

WATERSHED PARTNERSHIP

Human Waste

- Wastewater
- Septic/Aerobic Systems
- Illicit Sewage

Domestic Animal Waste

- Pets
- Livestock

Wildlife and Invasive Species Waste

- Deer and Other Wildlife
- Feral Hogs

MODEL REVISION UPDATE

Bacteria Modeling

- Based on land cover, literature values, and stakeholder observations
- Estimates loads from different sources of bacteria
- Estimates spatial variation
- Estimates changes over time
- Guides implementation decisionmaking

ON-SITE SEWAGE FACILITIES

First Draft Methods:

- Used permit data and assumption of unpermitted units based on occupied parcels outside service areas
- Estimated 10% failing

Revision Suggestions:

 Recommend returning to original assumption of 10% failure rate for all (permitted and unpermitted) systems

Updated Model Results

FIRST DRAFT

41,322 billion cfu/day (1.4x growth by 2050)

¹OSSFs – On-Site Sewage Facilities ²WWTFs – Wastewater Treatment Facilities

REVISED

Adjustments made for:

- OSSFs¹ assume 10% failure for all units
- Livestock use revised unit load
- Feral hogs account for population in riparian buffer

LINKING MODELS WITH STREAMFLOW

Load Duration Curve Stream Flow Conditions	E. coli Load Reduction Estimate		
	Tributaries	Upper East Fork	Lower East Fork
High Flow	70%	86%	83%
Moist Conditions	25%	45%	56%
Mid-Range Conditions		4%	31%
Dry Conditions			1%
Low Flow			
Weighted Average	36 %	38%	35%

REDUCTION TARGET CALCULATIONS

IMPLEMENTATION STRATEGIES

Setting Goals

- Decide on target date for implementation goals
- Select focus areas based on modeling results and stakeholder recommendations
- Discuss best distribution of effort – not required to be proportional to model results

Selecting a Target Date

Time for Implementation

2025 2030 2035 2040 2045 2050

Model Accuracy

POLL QUESTION 1:

What year should be the target for completing the implementation measures in the watershed protection plan? *Choose only one*

0	2035
0	2040
0	2045

WHERE TO FOCUS

- Different pressures affect different parts of the watershed
- Implementation measures can be customized in different areas for more effective results
- H-GAC suggests focusing on three major attainment areas

POLL QUESTION 2:

Are the three suggested attainment areas appropriate subdivisions of the watershed? *Choose only one*

O Yes

- No, there should be more
- O No, there should be fewer

UNIT REDUCTIONS

	Unit Reduction Target by 2040		
Source	Tributaries	Upper East Fork	Lower East Fork
OSSFs ¹	21	41	348
WWTFs ²	<1	<1	<1
Dogs	115	278	2,097
Cattle	1,548	843	207
Horses	145	140	66
Sheep and Goats	177	97	24
Deer	443	407	158
Other Sources	NA	NA	NA
Feral Hogs	654	594	243

¹OSSFs – On-Site Sewage Facilities ²WWTFs – Wastewater Treatment Facilities

NEXT STEPS

TIMELINE

2022

► 2024

SHORT TERM GOALS

EAST FORK SAN JACINTO RIVER

- Next Partnership meeting in early October to flesh out details of implementation
- H-GAC will begin drafting the WPP based on stakeholder feedback
- One-on-one meetings with stakeholders

POLL QUESTION 3:

Would you prefer to review sections of the WPP as they are written, or after the first draft is complete? ***Choose only one***

O SectionsO Complete Draft

HOW CAN WE HELP?

- Tell us about your projects and organizations!
- Tell us how we can:
 - Amplify
 - Collaborate
 - Coordinate

DISCUSSION & QUESTIONS

Rachel Windham 713-993-2497 rachel.windham@h-gac.com

3555 Timmons Lane, Suite 120 Houston, TX 77027

www.eastforkpartnership.com

This project is funded by a Clean Water Act 319(h) grant from the US Environmental Protection Agency and administered by the Texas Commission on Environmental Quality.

WATERSHED PARTNERSHIP

SUPPLEMENTAL SLIDES

Relationship To Streamflow

ACHIEVING THE REDUCTION TARGET

- Reduce loads from each source proportional to respective contribution to the target year load;
 - Reduce loads from each source subjectively; or
 - Reduce loads from each source proportional to respective contribution to the 2022 load estimate

Representative Units

- During modeling process, load contributed by each unit varies with proximity to waterway
- When calculating number of units to address based on reduction targets, reduction target divided by maximum load per unit (assume buffer areas prioritized in implementation)

